Random House: Bringing You the Best in Fiction, Nonfiction, and Children's Books
Newletters and Alerts

Buy now from Random House

  • The Future of Life
  • Written by Edward O. Wilson
  • Format: Trade Paperback | ISBN: 9780679768111
  • Our Price: $15.95
  • Quantity:
See more online stores - The Future of Life

Buy now from Random House

  • The Future of Life
  • Written by Edward O. Wilson
  • Format: eBook | ISBN: 9780375414565
  • Our Price: $11.99
  • Quantity:
See more online stores - The Future of Life

The Future of Life

    Select a Format:
  • Book
  • eBook

Written by Edward O. WilsonAuthor Alerts:  Random House will alert you to new works by Edward O. Wilson


List Price: $11.99


On Sale: April 09, 2002
Pages: 256 | ISBN: 978-0-375-41456-5
Published by : Vintage Knopf
The Future of Life Cover

Share & Shelve:

  • Add This - The Future of Life
  • Email this page - The Future of Life
  • Print this page - The Future of Life
Categories for this book
Tags for this book (powered by Library Thing)
science (52) biology (43) ecology (27) environment (25) nature (18)
» see more tags
Synopsis|Excerpt|Table of Contents


One of the world’s most important scientists, Edward O. Wilson is also an abundantly talented writer who has twice won the Pulitzer Prize. In this, his most personal and timely book to date, he assesses the precarious state of our environment, examining the mass extinctions occurring in our time and the natural treasures we are about to lose forever. Yet, rather than eschewing doomsday prophesies, he spells out a specific plan to save our world while there is still time. His vision is a hopeful one, as economically sound as it is environmentally necessary. Eloquent, practical and wise, this book should be read and studied by anyone concerned with the fate of the natural world.


Chapter 1


The totality of life, known as the biosphere to scientists and creation to theologians, is a membrane of organisms wrapped around Earth so thin it cannot be seen edgewise from a space shuttle, yet so internally complex that most species composing it remain undiscovered. The membrane is seamless. From Everest's peak to the floor of the Mariana Trench, creatures of one kind or another inhabit virtually every square inch of the planetary surface. They obey the fundamental principle of biological geography, that wherever there is liquid water, organic molecules, and an energy source, there is life. Given the near-universality of organic materials and energy of some kind or other, water is the deciding element on planet Earth. It may be no more than a transient film on grains of sand, it may never see sunlight, it may be boiling hot or supercooled, but there will be some kind of organism living in or upon it. Even if nothing alive is visible to the naked eye, single cells of microorganisms will be growing and reproducing there, or at least dormant and awaiting the arrival of liquid water to kick them back into activity.

An extreme example is the McMurdo Dry Valleys of Antarctica, whose soils are the coldest, driest, and most nutritionally deficient in the world. On first inspection the habitat seems as sterile as a cabinet of autoclaved glassware. In 1903, Robert F. Scott, the first to explore the region, wrote, "We have seen no living thing, not even a moss or lichen; all that we did find, far inland among the moraine heaps, was the skeleton of a Weddell seal, and how that came there is beyond guessing." On all of Earth the McMurdo Dry Valleys most resemble the rubbled plains of Mars.

But the trained eye, aided by a microscope, sees otherwise. In the parched streambeds live twenty species of photosynthetic bacteria, a comparable variety of mostly single-celled algae, and an array of microscopic invertebrate animals that feed on these primary producers. All depend on the summer flow of glacial and icefield meltwater for their annual spurts of growth. Because the paths of the streams change over time, some of the populations are stranded and forced to wait for years, perhaps centuries, for the renewed flush of meltwater. In the even more brutal conditions on bare land away from the stream channels live sparse assemblages of microbes and fungi together with rotifers, bear animalcules, mites, and springtails feeding on them. At the top of this rarefied food web are four species of nematode worms, each specialized to consume different species in the rest of the flora and fauna. With the mites and springtails they are also the largest of the animals, McMurdo's equivalent of elephants and tigers, yet all but invisible to the naked eye.

The McMurdo Dry Valleys's organisms are what scientists call extremophiles, species adapted to live at the edge of biological tolerance. Many populate the environmental ends of Earth, in places that seem uninhabitable to gigantic, fragile animals like ourselves. They constitute, to take a second example, the "gardens" of the Antarctic sea ice. The thick floes, which blanket millions of square miles of ocean water around the continent much of the year, seem forbiddingly hostile to life. But they are riddled with channels of slushy brine in which single-celled algae flourish year-round, assimilating the carbon dioxide, phosphates, and other nutrients that work up from the ocean below. The garden photosynthesis is driven by energy from sunlight penetrating the translucent matrix. As the ice melts and erodes during the polar summer, the algae sink into the water below, where they are consumed by copepods and krill. These tiny crustaceans in turn are the prey of fish whose blood is kept liquid by biochemical antifreezes.

The ultimate extremophiles are certain specialized microbes, including bacteria and their superficially similar but genetically very different relatives the archaeans. (To take a necessary digression: biologists now recognize three domains of life on the basis of DNA sequences and cell structure. They are the Bacteria, which are the conventionally recognized microbes; the Archaea, the other microbes; and the Eukarya, which include the single-celled protists or "protozoans," the fungi, and all of the animals, including us. Bacteria and archaeans are more primitive than other organisms in cell structure: they lack membranes around their nuclei as well as organelles such as chloroplasts and mitochondria.) Some specialized species of bacteria and archaeans live in the walls of volcanic hydrothermal vents on the ocean floor, where they multiply in water close to or above the boiling point. A bacterium found there, Pyrolobus fumarii, is the reigning world champion among the hyperthermophiles, or lovers of extreme heat. It can reproduce at 235°F, does best at 221°F, and stops growing when the temperature drops to a chilly 194°F. This extraordinary feat has prompted microbiologists to inquire whether even more advanced, ultrathermophiles exist, occupying geothermal waters at 400°F or even higher. Watery environments with temperatures that hot exist. The submarine spumes close to the Pyrolobus fumarii bacterial colonies reach 660°F. The absolute upper limit of life as a whole, bacteria and archaeans included, is thought to be about 300°F, at which point organisms cannot sustain the integrity of DNA and the proteins on which known forms of life depend. But until the search for ultrathermophiles, as opposed to mere hyperthermophiles, is exhausted, no one can say for certain that these intrinsic limits actually exist.

During more than three billion years of evolution, the bacteria and archaeans have pushed the boundaries in other dimensions of physiological adaptation. One species, an acid lover (acidophile), flourishes in the hot sulfur springs of Yellowstone National Park. At the opposite end of the pH scale, alkaliphiles occupy carbonate-laden soda lakes around the world. Halophiles are specialized for life in saturated salt lakes and salt evaporation ponds. Others, the barophiles (pressure lovers), colonize the floor of the deepest reaches of the ocean. In 1996, Japanese scientists used a small unmanned submersible to retrieve bottom mud from the Challenger Deep of the Mariana Trench, which at 35,750 feet is the lowest point of the world's oceans. In the samples they discovered hundreds of species of bacteria, archaeans, and fungi. Transferred to the laboratory, some of the bacteria were able to grow at the pressure found in the Challenger Deep, which is a thousand times greater than that near the ocean surface.

The outer reach of physiological resilience of any kind may have been attained by Deinococcus radiodurans, a bacterium that can live through radiation so intense the glass of a Pyrex beaker holding them is cooked to a discolored and fragile state. A human being exposed to 1000 rads of radiation energy, a dose delivered in the atomic explosions at Hiroshima and Nagasaki, dies within one or two weeks. At 1,000 times this amount, 1 million rads, the growth of the Deinococcus is slowed, but all the bacteria still survive. At 1.75 million rads, 37 percent make it through, and even at 3 million rads a very small number still endure. The secret of this superbug is its extraordinary ability to repair broken DNA. All organisms have an enzyme that can replace chromosome parts that have been shorn off, whether by radiation, chemical insult, or accident. The more conventional bacterium Escherichia coli, a dominant inhabitant of the human gut, can repair two or three breaks at one time. The superbug can manage five hundred breaks. The special molecular techniques it uses remain unknown.

Deinococcus radiodurans and its close relatives are not just extremophiles but ultimate generalists and world travelers, having been found, for example, in llama feces, Antarctic rocks, the tissue of Atlantic haddock, and a can of ground pork and beef irradiated by scientists in Oregon. They join a select group, also including cyanobacteria of the genus Chroococcidiopsis, that thrive where very few other organisms venture. They are Earth's outcast nomads, looking for life in all the worst places.

By virtue of their marginality, the superbugs are also candidates for space travel. Microbiologists have begun to ask whether the hardiest among them might drift away from Earth, propelled by stratospheric winds into the void, eventually to settle alive on Mars. Conversely, indigenous microbes from Mars (or beyond) might have colonized Earth. Such is the theory of the origin of life called panspermia, once ridiculed but now an undeniable possibility.

The superbugs have also given a new shot of hope to exobiologists, scientists who look for evidences of life on other worlds. Another stimulus is the newly revealed existence of SLIMEs (subsurface lithoautotrophic microbial ecosystems), unique assemblages of bacteria and fungi that occupy pores in the interlocking mineral grains of igneous rock beneath Earth's surface. Thriving to a depth of up to two miles or more, they obtain their energy from inorganic chemicals. Because they do not require organic particles that filter down from conventional plants and animals whose ultimate energy is from sunlight, the SLIMEs are wholly independent of life on the surface. Consequently, even if all of life as we know it were somehow extinguished, these microscopic troglodytes would carry on. Given enough time, a billion years perhaps, they would likely evolve new forms able to colonize the surface and resynthesize the precatastrophe world run by photosynthesis.

The major significance of the SLIMEs for exobiology is the heightened possibility they suggest of life on other planets and Mars in particular. SLIMEs, or their extraterrestrial equivalent, might live deep within the red planet. During its early, aqueous period Mars had rivers, lakes, and perhaps time to evolve its own surface organisms. According to one recent estimate, there was enough water to cover the entire Martian surface to a depth of five hundred meters. Some, perhaps most, of the water may still exist in permafrost, surface ice covered by the dust we now see from our landers--or, far below the surface, in liquid form. How far below? Physicists believe there is enough heat inside Mars to liquefy water. It comes from a combination of decaying radioactive minerals, some gravitational heat remaining from the original assembly of the planet out of smaller cosmic fragments, and gravitational energy from the sinking of heavier elements and rise of lighter ones. A recent model of the combined effects suggests that the temperature of Mars increases with depth in the upper crustal layers at a rate of 6°F per mile. As a consequence, water could be liquid at eighteen miles beneath the surface. But some water may well up occasionally from the aquifers. In 2000, high-resolution scans by an orbiting satellite revealed the presence of gullies that may have been cut by running streams in the last few centuries or even decades. If Martian life did arise on the planet, or arrived in space particles from Earth, it must include extremophiles, some of which are (or were) ecologically independent single-celled organisms able to persist in or beneath the permafrost.

From the Hardcover edition.

Table of Contents

List of Endangered and Extinct Species and Races
Prologue: A Letter to Thoreau

Chapter Seven: THE SOLUTION

Edward O. Wilson|Author Desktop

About Edward O. Wilson

Edward O. Wilson - The Future of Life

Photo © J.D. Sloan

Edward O. Wilson is the author of two Pulitzer Prize-winning books, On Human Nature (1978) and The Ants (1990, with Bert Hölldobler), as well as many other groundbreaking works, including Consilience, Naturalist, and Sociobiology. A recipient of many of the world’s leading prizes in science and conservation, he is currently Pellegrino University Research Professor and Honorary Curator in Entomology of the Museum of Comparative Zoology at Harvard University. He lives in Lexington, Massachusetts, with his wife, Renee.

Author Q&A

Artist Isabella Kirkland's painting "Descendant Species" graces the cover of Edward O. Wilson's The Future of Life. The author and artist have worked to provide readers with an interactive version of the painting, accompanied by their own written commentary.



“Wilson, perhaps our greatest living scientist . . . offers the most powerful indictment yet of humanity as destroyer.” –San Francisco Chronicle Observer

“His book eloquently makes one thing clear: . . . we know what we do, and we have a choice.” –The New York Times Book Review

The Future of Life makes it clear once again that Wilson is one of our most gifted science writers.” –The Washington Post

“[An] elegant manifesto. . . . [A] nuanced and evocative explanation of just why biodiversity matters.” –The New Yorker

“Wilson writes with a magisterial tone. . . . The Future of Life is the work of a man with deep convictions who is also utterly reasonable.” –Bill McKibben, The Boston Globe

“A critical report card for planet Earth, an urgent manifesto on global action, an eloquent plea . . . A literate, even poetic recounting of current scientific information that is readily accessible to lay readers. A more engaging and persuasive single volume on this crucial subject is difficult to imagine.” –Seattle Post-Intelligencer

“A no-nonsense appraisal of the problem of species extinctions and a pragmatic road map for renewal. . . . The Future of Life takes the reader on a fascinating and ultimately hopeful journey.” –San José Mercury News

“Our contemporary Thoreau, Wilson elegantly and insistently makes the case that to choose biodiversity is to choose survival.” –Atlanta Journal-Constitution

“Wilson knows his subject too well. It behooves the rest of us to listen.” –San Diego Union Tribune

“One of the most clear-eyed pictures of how bad things have gotten.”–Minneapolis Star-Tribune

The Future of Life offers an encouraging vision that solutions to the environmental problems facing humanity are within reach. . . . A refreshing change from the doom-and-gloom rhetoric that marked much environmentalism in the past.”–American Scientist

“A landmark new book.” –Houston Chronicle

“The biosphere’s Paul Revere defines the incalculable value and fragility of ‘the totality of life.’” –Outside

“Wilson is a member of an important but very rare species: the world-class scientist who is also a great writer.” –Nature

“A short book of breathtaking scope. . . . Wilson brings genuine authority to these weighty pronouncements.”–New York Observer

“[A] readable gem. . . . Wilson manages to avoid dark gloom while still cataloguing the damage we have wrought.” –Toronto Star

“Takes the reader on a fascinating and ultimately hopeful journey. . . . A concise primer remarkable in its breadth and clarity.”–Austin American-Statesman

Reader's Guide|About the Book|Author Biography|Discussion Questions

About the Book


“An elegant manifesto. . . . A nuanced and evocative explanation of just why biodiversity matters.” –The New Yorker

The questions, discussion topics, and author biography that follow are intended to enhance your group’s reading of Edward O. Wilson’s The Future of Life, an impassioned call for the protection of the earth’s biodiversity by one of our greatest living scientists.

About the Guide

Our world is far richer than previously conceived, yet so ravaged by human activity that half its species could be gone by the end of the present century. These two contrasting truths–unexpected magnificence and underestimated peril–have become compellingly clear during the past two decades of research on biological diversity.

In this timely and important new book, Wilson describes exactly what treasures of the natural world we are about to lose forever and what we can do right now to save them. Destruction of natural habitats, the rampant spread of invasive species, pollution, uncontrolled population growth, and over-harvesting are the main threats to our natural world. Wilson explains how each of these elements works to undo the web of life that supports us, and why it is in our best interest to stop it. In the process, he explores the ethical and religious base of the conservation movement and deflates the myth that environmental policy is antithetical to economic growth by illustrating how new methods of conservation can ensure long-term economic well-being.

About the Author

Edward O. Wilson was born in Birmingham, Alabama, in 1929. He received a Ph.D. in biology from Harvard, where he has since taught, and where he has been the recipient of both of its college-wide teaching awards. He is the author of two Pulitzer Prize-winning books, On Human Nature (1978), and The Ants (1990, with Bert Holldobler), as well as other groundbreaking works, including Naturalist and Sociobiology. A recipient of many of the world's leading prizes in science and conservation, he is currently Pellegrino University Research Professor and Honorary Curator in Entomology of the Museum of Comparative Zoology at Harvard University. He lives in Lexington, Massachusetts.

Discussion Guides

1. In his prologue, Wilson addresses Henry David Thoreau, the nineteenth-century naturalist: “I came because of all your contemporaries you are the one I most need to understand” [pp. xi-xii]. If you have read Thoreau’s Walden, what do you think Thoreau would make of the present state of the earth as described in Wilson's The Future of Life? Why is it important to Wilson to make personal connections between himself and Darwin, Huxley, and Thoreau [see p. xii]? Why does Wilson begin his book with this homage to Thoreau? What specifically about Thoreau’s approach to life does Wilson wish people would begin to emulate?

2. Many organisms and ecosystems unfamiliar to nonscientists are described in these pages, particularly chapter 1, “To the Ends of Earth.” What is the effect of reading about extremophiles, radiation-resistant bacteria, the deeps of the Mariana Trench, the environment of the McMurdo Dry Valleys, and the bacteria and fungi of Antarctica’s Lake Vostok? Why is it necessary for people to familiarize themselves with the complexity of the Earth’s organisms and its enormous variety of ecosystems? [See pp. 3-6, 9.]

3. What is the problem, as Wilson sees it, with the economic approach to environmental policy? What is lost if everything is translated into monetary value? What would be accomplished if governments adopted the GPI (genuine progress indicator) instead of the GNP (gross national product), which Wilson discusses on page 28? What is indicated, in terms of the American approach to environmental responsibility, by the fact that the United States refuses for economic reasons to adopt the Kyoto Climate Protocol to reduce greenhouse gases?

4. What is most troubling about the discovery that many frog and toad species are rapidly becoming extinct or are undergoing mutations and physical malformations? Why are amphibians such good indicators of environmental stresses? Is all of the damage to amphibian habitats ultimately due to human activity? [See pp. 54-56.]

5. In his projection of life on Earth in the year 2100, Wilson suggests that human beings will have become more and more homogenized, genetically speaking, through intermarriage, and that the biological differences between races will grow fainter with each generation [pp. 76-77]. What might be the social advantages of greater racial homogeneity? Might the breakdown of racial difference promote greater harmony among peoples, or are issues of genetics not the most provocative sources of ethnic and class conflict? What are the biological disadvantages of the loss of geographically based diversity in the human gene pool?

6. Is Wilson correct in assuming that the people of 2100 will be “aging and wiser” about the damage the human population has done to the Earth and to the future [p. 77]? What is the tone of the “testament” to our heirs that Wilson includes on pages 77 and 78? Is this a warning that in the future certain missing aspects of the natural world will have to be fabricated or synthesized in order to re-create what was destroyed? What does Wilson mean when he calls the heritage of the twenty-first century “the Age of Loneliness” for humanity?

7. What are the dangers and possible benefits of genetically engineered food crops? Why are people in the United States far less resistant to this idea than people in Europe, where environmental activism is more widespread? What is Wilson's position regarding genetic engineering [see pp. 116-120]?

8. Wilson points out that most of the planet’s “hotspots”—places in which the environment is most severely threatened—are in the developing world, where populations are often extremely poor. Rich nations are more likely than poor ones to take active steps to preserve their environment. Of the conservationist strategies and political initiatives he discusses, which seem most likely to succeed in poor nations? How important is the role played by nongovernmental organizations (NGOs) in conservation [see chapter 7]?

9. The most important concern of Wilson and other environmentalists is what he calls “the wreckage of the planet by an exuberantly plentiful and ingenious humanity” [xxiii]; elsewhere he calls Homo sapiens the “serial killer of the biosphere” [p. 94]. But he suggests that humanity may be ready to begin to be more thoughtful about its impact on the Earth. On page 22 he asks, “How best can we shift to a culture of permanence, both for ourselves and for the biosphere that sustains us?” What are some of the ways that this might happen? What are some of the major forces of resistance to such a change?

10. In the developed world, where the majority of people live in urban and suburban environments, a sense of alienation from wild nature is quite common. Given that this is the case, how difficult is it for people to feel alarmed about the perilous state of the Earth and its disappearing species, encroaching oceans, and melting ice caps? What sort of leap of the imagination do people have to make to become committed environmentalists? Do most people in America think about how their consumer behaviors, for instance, affect people, animals, and nature in biologically threatened areas of the developing world?

11. In his prologue Wilson writes, “The race is now on between the technoscientific forces that are destroying the living environment and those that can be harnessed to save it. . . . If the race is won, humanity can emerge in far better condition than when it entered, and with most of the diversity of life still intact” [p. xxiii]. How does Wilson reach the mood of cautious optimism in his final chapter? Among his specific suggestions for “the solution” [chapter 7] to the impending environmental catastrophe, which seem most likely to succeed? Which solutions will be most difficult to implement, and why? Is Wilson, as he says, “an extremist” in suggesting that 50 percent of the world’s land surface should be protected from overpopulation and development?

12. Biophilia is the title of one of Wilson’s previous books; he defines the word as “the innate tendency to affiliate with, and draw deep satisfaction from, other organisms.” He has also said, “There’s no doubt anymore, from psychological tests, that people do prefer a natural environment in which to live. . . . Clearly this is something very deep and very mysterious in the human psyche, and very important for human welfare.” * What is the relationship, as Wilson sees it, between human spirituality and the natural world? Why should the human spiritual impulse play a central role in environmental thinking and policy-making?

* Both quotes from “Living in Shimmering Equilibrium,” an interview with E. O. Wilson by Fred Branfman on Salon.com.

  • The Future of Life by Edward O. Wilson
  • March 11, 2003
  • Science
  • Vintage
  • $15.95
  • 9780679768111

Your E-Mail Address
send me a copy

Recipient's E-Mail Address
(multiple addresses may be separated by commas)

A personal message: